

Network Model and

Hierarchy Model

 In network model the data is stored in the form of

graph In the hierarchy model data is stored in the

form of Trees

Network Model

Hierarchical Model

Relational Model

Object/Relational Model

Object-Oriented Model

Semi structured Model

Associative Model

Entity-Attribute-Value (EAV) data model

Context Model

 The hierarchical data model organizes data in

a tree structure. There is a hierarchy of parent

and child data segments. This structure

implies that a record can have repeating

information, generally in the child data

segments. Data in a series of records, which

have a set of field values attached to it.

 It collects all the instances of a specific record
together as a record type. These record types
are the equivalent of tables in the relational
model, and with the individual records being
the equivalent of rows.

 Basic Concepts

 Data-Structure Diagrams

 The DBTG(database task group) CODASYL

(multiuser compliance database mgmt

system)Model

 DBTG Data-Retrieval Facility

 DBTG Update Facility

 DBTG Set-Processing Facility

 Mapping of Networks to Files

 Data are represented by collections of records.

◦ similar to an entity in the E-R model

◦ Records and their fields are represented as record type

type customer = record type account =
record
 customer-name: string; account-number: integer;
 customer-street: string; balance: integer;
 customer-city: string;

end end

 Relationships among data are represented by links

◦ similar to a restricted (binary) form of an E-R relationship

◦ restrictions on links depend on whether the relationship is many-
many, many-to-one, or one-to-one.

 Schema representing the design of a network database.

 A data-structure diagram consists of two basic components:

◦ Boxes, which correspond to record types.

◦ Lines, which correspond to links.

 Specifies the overall logical structure of the database.

 For every E-R diagram, there is a corresponding data-structure
diagram.

 Since a link cannot contain any data value, represent an E-R
relationship with attributes with a new record type and links.

 To represent an E-R relationship of degree 3 or higher, connect the
participating record types through a new record type that is linked
directly to each of the original record types.

1. Replace entity sets account, customer, and branch with record types
account, customer, and branch, respectively.

2. Create a new record type Rlink (referred to as a dummy record type).

3. Create the following many-to-one links:

◦ CustRlink from Rlink record type to customer record type

◦ AcctRlnk from Rlink record type to account record type

◦ BrncRlnk from Rlink record type to branch record type

 All links are treated as many-to-one relationships.

 To model many-to-many relationships, a record type is defined to
represent the relationship and two links are used.

 The structure consisting of two record types that are linked together
is referred to in the DBTG(database task group) model as a DBTG set

 In each DBTG set, one record type is designated as the owner, and
the other is designated as the member, of the set.

 Each DBTG set can have any number of set occurrences (actual
instances of linked records).

 Since many-to-many links are disallowed, each set occurrence has
precisely one owner, and has zero or more member records.

 No member record of a set can participate in more than one
occurrence of the set at any point.

 A member record can participate simultaneously in several set
occurrences of different DBTG sets.

 Provide a mechanism for a field to have a set of values rather than a
single value.

 Alternative representation of weak entities from the E-R model

 Example: Two sets.

◦ customer (customer-name)

◦ customer-address (customer-street, customer-city)

 The following diagrams represent these sets without the repeating-
group construct.

 With the repeating-group construct, the data-structure diagram
consists of the single record type customer.

 The DBTG data manipulation language consists of a number of
commands that are embedded in a host language.

 Run unit — system application program consisting of a sequence of
host language and DBTG command statements. Statements access
and manipulate database items as well as locally declared variables.

 Program work-area (or user work area) — a buffer storage area the
system maintains for each application program

 Record Templates

 Currency pointers

◦ Current of record type

◦ Current of set type

◦ Current of run unit

 Status flags

◦ DB-status is most frequently used

◦ Additional variables: DB-set-name, DB-record-name, and
DB-data-name

 Templates for three record types: customer, account, and branch.

 Six currency pointers

◦ Three pointers for record types: one each tot he most recently
accessed customer, account, and branch record

◦ Two pointers for set types: one to the most recently accessed
record in an occurrence of the set depositor, one to the most
recently accessed record in an occurrence of the set account-
branch

◦ One run-unit pointer.

 Status flags: four variables defined previously

 Following diagram shows an example program work area state.

 find locates a record in the database and sets the appropriate
currency pointers

 get copies of the record to which the current of run-unit points from
the database to the appropriate program work area template

 Example: Executing a find command to locate the customer record
belonging to Johnson causes the following changes to occur in the
state of the program work area.

◦ The current of the record type customer now points to the record
of Johnson.

◦ The current of set type depositor now points to the set owned by
Johnson

◦ The current of run unit now points to customer record Johnson.

 find any <record type> using <record-field>
Locates a record of type <record type> whose <record-field>
value is the same as the value of <record-field> in the
<record type> template in the program work area.

 Once such a record is found, the following currency pointers are set
to point to that record:

◦ The current of run-unit pointer

◦ The record-type currency pointer for <record type>

◦ For each set in which that record belongs, the appropriate set
currency pointer

 find duplicate <record type> using <record-field>
Locates (according to a system-dependent ordering) the next record
that matches the <record-field>

 Other find commands locate records in the DBTG set that is pointed
to by the <set-type> currency pointer.

 find first <record type> within <set-type>
Locates the first database record of type <record type>
belonging to the current <set-type>.

 To locate the other members of a set,k we use

 find next <record type> within <set-type>

which finds the next element in the set <set-type>.

 find owner within <set-type>
Locates the owner of a particular DBTG set

 For queries in which a field value must be matched with a specified
range of values, rather than to only one, we need to:

◦ get the appropriate records into memory

◦ examine each one separately for a match

◦ determine whether each is the; target of our find statement

 Print the total number of accounts in the Perryridge branch with a
balance greater than $10,000.

count := 0;
branch.branch-name := “Perryridge”;
find any branch using branch-name;
find first account within account-branch;
while DB-status = 0 do
 begin
 get account
 if account.balance > 10000 then count := count + 1;
 find next account within account-branch;
 end
print (count);

 DBTG mechanisms are available to update information in the
database.

 To create a new record of type <record type>

◦ insert the appropriate values in the corresponding
<record type> template

◦ add this new record to the database by executing

 store <record type>

 Can create and add new records only one at a time

 To modify an existing record of type <record type>

◦ find that record in the database

◦ get that record into memory

◦ change the desired fields in the template of <record type>

◦ reflect the changes to the record to which the currency point of
<record type> points by executing

 modify <record type>

 To delete an existing record of type <record type>

◦ make the currency pointer of that type point to the record in the
database to be deleted

◦ delete that record by executing

 erase <record type>

 Delete an entire set occurrence by finding the owner of the set and
executing

 erase all <record type>

◦ Deletes the owner of the set, as well as all the set’s members.

◦ If a member of the set is an owner of another set, the members of
that second set also will be deleted.

◦ erase all is recursive.

 Mechanisms are provided for inserting records into and removing
records from a particular set occurrence

 Insert a new record into a set by executing the connect statement.

 connect <record type> to <set-type>

 Remove a record from a set by executing the disconnect statement.

 disconnect <record type> from <set-type>

